Перевод: со всех языков на английский

с английского на все языки

the forerunner

  • 1 forerunner

    [ˈfɔːranə] noun
    a person or thing which is a sign of what is to follow:

    Penicillin was the forerunner of modern antibiotics.

    السابِق، المُمَهِّد، المُبَشِّر بِمَجيء

    Arabic-English dictionary > forerunner

  • 2 precursor

    adj.
    1 precursive, precursory.
    2 trendsetting.
    m.
    1 forerunner, herald, pioneer, predecessor.
    2 precursor, forerunner.
    * * *
    1 precursory
    nombre masculino,nombre femenino
    1 precursor
    * * *
    (f. - precursora)
    noun
    forerunner, pioneer
    * * *
    precursor, -a
    SM / F precursor, forerunner
    * * *
    - sora masculino, femenino precursor, forerunner
    * * *
    = forerunner [fore-runner], precursor, progenitor, bellwether.
    Ex. The forerunner of many recent ideas, and the force behind some of the remaining traditional systems was Charles Ammi Cutter.
    Ex. These Centres were usually thought of initially as being a part of a national library or, indeed, a precursor to the development of a national library.
    Ex. These shifts were actually adaptations to events that altered the environmental conditions in which our progenitors lived.
    Ex. Scientists have long suspected amphibians are good bellwethers for impending alterations in biodiversity during rapid climate change.
    * * *
    - sora masculino, femenino precursor, forerunner
    * * *
    = forerunner [fore-runner], precursor, progenitor, bellwether.

    Ex: The forerunner of many recent ideas, and the force behind some of the remaining traditional systems was Charles Ammi Cutter.

    Ex: These Centres were usually thought of initially as being a part of a national library or, indeed, a precursor to the development of a national library.
    Ex: These shifts were actually adaptations to events that altered the environmental conditions in which our progenitors lived.
    Ex: Scientists have long suspected amphibians are good bellwethers for impending alterations in biodiversity during rapid climate change.

    * * *
    1
    (de una tendencia, un suceso): un movimiento precursor del Cubismo a movement which was a precursor o forerunner of Cubism
    2 ( Tec) precursor ( before n)
    masculine, feminine
    precursor, forerunner
    * * *

    precursor
    ◊ - sora sustantivo masculino, femenino

    precursor, forerunner
    precursor,-ora sustantivo masculino y femenino precursor: ese autor es el precursor del modernismo, that author is the precursor of modernism

    ' precursor' also found in these entries:
    Spanish:
    antesala
    - precursora
    English:
    forerunner
    - harbinger
    - precursor
    * * *
    precursor, -ora
    adj
    precursory;
    un movimiento precursor del impresionismo a movement which anticipated the Impressionists
    nm,f
    precursor
    * * *
    m, precursora f precursor, forerunner
    * * *
    : forerunner, precursor

    Spanish-English dictionary > precursor

  • 3 Vorläufer

    m
    1. Person und Sache: forerunner, precursor
    2. Skisport: forerunner
    3. VERK. relief train
    * * *
    der Vorläufer
    progenitor
    * * *
    Vor|läu|fer(in)
    m(f)
    forerunner (AUCH SKI), precursor
    * * *
    (a person or thing which is a sign of what is to follow: Penicillin was the forerunner of modern antibiotics.) forerunner
    * * *
    Vor·läu·fer(in)
    m(f) precursor, forerunner
    * * *
    der precursor; forerunner
    * * *
    1. Person und Sache: forerunner, precursor
    2. Skisport: forerunner
    3. Verkehrswesen: relief train
    * * *
    der precursor; forerunner
    * * *
    m.
    harbinger n.
    precursor n.
    progenitor n.

    Deutsch-Englisch Wörterbuch > Vorläufer

  • 4 ancêtre

    ancêtre [ɑ̃sεtʀ]
    masculine noun, feminine noun
    * * *
    ɑ̃sɛtʀ
    1) ( aïeul) ancestor
    2) (colloq) ( personne âgée) old man/woman
    3) ( forme ancienne) ancestor; ( précurseur) father, forerunner
    * * *
    ɑ̃sɛtʀ nmf
    ancestor, fig
    * * *
    ancêtre nmf
    1 ( aïeul) ancestor; mes ancêtres my ancestors, my forebears; nos ancêtres les Gaulois our ancestors the Gauls;
    2 ( personne âgée) old man/woman;
    3 ( forme ancienne) ancestor; ( précurseur) father, forerunner; l'ancêtre de l'homme/du catamaran the ancestor of man/of the catamaran.
    [ɑ̃sɛtr] nom masculin et féminin
    1. [ascendant] ancestor, forefather
    c'était mon ancêtre he/she was an ancestor of mine
    2. [précurseur - personne, objet] ancestor, forerunner, precursor
    3. (familier) [vieille personne] old boy ( feminine old girl) (UK), old timer (US)
    ————————
    ancêtres nom masculin pluriel

    Dictionnaire Français-Anglais > ancêtre

  • 5 detrás de

    prep.
    behind, back of, at the back of, at the rear of.
    * * *
    * * *
    Ex. The forerunner of many recent ideas, and the force behind some of the remaining traditional systems was Charles Ammi Cutter.
    * * *

    Ex: The forerunner of many recent ideas, and the force behind some of the remaining traditional systems was Charles Ammi Cutter.

    * * *
    1. (en general) behind
    2. (en un orden) after

    Spanish-English dictionary > detrás de

  • 6 предшественник

    Предшественник - forerunner (предвестник); precursor (в химической реакции)
     The computer control system is expected to be the forerunner of many systems to be commissioned in the next decade.
     Conversion of the precursor into the active enzyme is brought about by hydrogen ions.

    Русско-английский научно-технический словарь переводчика > предшественник

  • 7 Иоанн Предтеча

    (он же Иоанн Креститель) St. John the Precurser, St. John the Forerunner, John, the forerunner of Christ

    "Иоанн Предтеча! крылатый" (икона) — The Winged St. John the Precurser

    Русско-английский словарь религиозной лексики > Иоанн Предтеча

  • 8 voorbode

    forerunner, herald; 〈figuurlijk; voorteken〉 omen
    voorbeelden:
    1   de voorbode van de crisis the forerunner of the crisis
         de zwaluwen zijn de voorboden van de lente the swallows are the heralds of spring

    Van Dale Handwoordenboek Nederlands-Engels > voorbode

  • 9 praecursor

    praecursor, ōris, m. [id.], one who runs before.
    I.
    A forerunner, precursor, of a servant, Plin. Pan. 76 fin.; one who precedes on the same path, Lact. 6, 7, 3.—

    Esp.,

    the forerunner of Christ, John the Baptist, Aug. Tract. in Johan. 4, 6; 4, 8.—
    II.
    Trop.:

    flos praecursor indolis bonae,

    Nazar. Pan. Const. 3 med.
    III.
    In milit. lang., an advanced guard, vanguard, Liv. 26, 17 fin.
    B.
    Transf., a scout, spy (cf.:

    emissarius, speculator),

    Cic. Verr. 2, 5, 41, § 108. [p. 1416]

    Lewis & Short latin dictionary > praecursor

  • 10 Иоанн Предтеча

    1) General subject: precursor (Precursor)
    2) Bookish: (Precursor) precursor

    Универсальный русско-английский словарь > Иоанн Предтеча

  • 11 предтеча

    м. и ж. книжн.
    forerunner, precursor

    Иоа́нн Предте́ча библ. — John the Forerunner / Baptist

    Новый большой русско-английский словарь > предтеча

  • 12 Adams, William Bridges

    [br]
    b. 1797 Madeley, Staffordshire, England
    d. 23 July 1872 Broadstairs, Kent, England
    [br]
    English inventory particularly of road and rail vehicles and their equipment.
    [br]
    Ill health forced Adams to live abroad when he was a young man and when he returned to England in the early 1830s he became a partner in his father's firm of coachbuilders. Coaches during that period were steered by a centrally pivoted front axle, which meant that the front wheels had to swing beneath the body and were therefore made smaller than the rear wheels. Adams considered this design defective and invented equirotal coaches, built by his firm, in which the front and rear wheels were of equal diameter and the coach body was articulated midway along its length so that the front part pivoted. He also applied himself to improving vehicles for railways, which were developing rapidly then.
    In 1843 he opened his own engineering works, Fairfield Works in north London (he was not related to his contemporary William Adams, who was appointed Locomotive Superintendent to the North London Railway in 1854). In 1847 he and James Samuel, Engineer to the Eastern Counties Railway, built for that line a small steam inspection car, the Express, which was light enough to be lifted off the track. The following year Adams built a broad-gauge steam railcar, the Fairfield, for the Bristol \& Exeter Railway at the insistance of the line's Engineer, C.H.Gregory: self-propelled and passenger-carrying, this was the first railcar. Adams developed the concept further into a light locomotive that could haul two or three separate carriages, and light locomotives built both by his own firm and by other noted builders came into vogue for a decade or more.
    In 1847 Adams also built eight-wheeled coaches for the Eastern Counties Railway that were larger and more spacious than most others of the day: each in effect comprised two four-wheeled coaches articulated together, with wheels that were allowed limited side-play. He also realized the necessity for improvements to railway track, the weakest point of which was the joints between the rails, whose adjoining ends were normally held in common chairs. Adams invented the fishplated joint, first used by the Eastern Counties Railway in 1849 and subsequently used almost universally.
    Adams was a prolific inventor. Most important of his later inventions was the radial axle, which was first applied to the leading and trailing wheels of a 2–4–2 tank engine, the White Raven, built in 1863; Adams's radial axle was the forerunner of all later radial axles. However, the sprung tyres with which White Raven was also fitted (an elastic steel hoop was interposed between wheel centre and tyre) were not perpetuated. His inventiveness was not restricted to engineering: in matters of dress, his adoption, perhaps invention, of the turn-down collar at a time when men conventionally wore standup collars had lasting effect.
    [br]
    Bibliography
    Adams took out some thirty five British patents, including one for the fishplate in 1847. He wrote copiously, as journalist and author: his most important book was English Pleasure Carriages (1837), a detailed description of coachbuilding, together with ideas for railway vehicles and track. The 1971 reprint (Bath: Adams \& Dart) has a biographical introduction by Jack Simmons.
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 1. See also England, George.
    PJGR

    Biographical history of technology > Adams, William Bridges

  • 13 Babbage, Charles

    [br]
    b. 26 December 1791 Walworth, Surrey, England
    d. 18 October 1871 London, England
    [br]
    English mathematician who invented the forerunner of the modern computer.
    [br]
    Charles Babbage was the son of a banker, Benjamin Babbage, and was a sickly child who had a rather haphazard education at private schools near Exeter and later at Enfield. Even as a child, he was inordinately fond of algebra, which he taught himself. He was conversant with several advanced mathematical texts, so by the time he entered Trinity College, Cambridge, in 1811, he was ahead of his tutors. In his third year he moved to Peterhouse, whence he graduated in 1814, taking his MA in 1817. He first contributed to the Philosophical Transactions of the Royal Society in 1815, and was elected a fellow of that body in 1816. He was one of the founders of the Astronomical Society in 1820 and served in high office in it.
    While he was still at Cambridge, in 1812, he had the first idea of calculating numerical tables by machinery. This was his first difference engine, which worked on the principle of repeatedly adding a common difference. He built a small model of an engine working on this principle between 1820 and 1822, and in July of the latter year he read an enthusiastically received note about it to the Astronomical Society. The following year he was awarded the Society's first gold medal. He submitted details of his invention to Sir Humphry Davy, President of the Royal Society; the Society reported favourably and the Government became interested, and following a meeting with the Chancellor of the Exchequer Babbage was awarded a grant of £1,500. Work proceeded and was carried on for four years under the direction of Joseph Clement.
    In 1827 Babbage went abroad for a year on medical advice. There he studied foreign workshops and factories, and in 1832 he published his observations in On the Economy of Machinery and Manufactures. While abroad, he received the news that he had been appointed Lucasian Professor of Mathematics at Cambridge University. He held the Chair until 1839, although he neither resided in College nor gave any lectures. For this he was paid between £80 and £90 a year! Differences arose between Babbage and Clement. Manufacture was moved from Clement's works in Lambeth, London, to new, fireproof buildings specially erected by the Government near Babbage's house in Dorset Square, London. Clement made a large claim for compensation and, when it was refused, withdrew his workers as well as all the special tools he had made up for the job. No work was possible for the next fifteen months, during which Babbage conceived the idea of his "analytical engine". He approached the Government with this, but it was not until eight years later, in 1842, that he received the reply that the expense was considered too great for further backing and that the Government was abandoning the project. This was in spite of the demonstration and perfectly satisfactory operation of a small section of the analytical engine at the International Exhibition of 1862. It is said that the demands made on manufacture in the production of his engines had an appreciable influence in improving the standard of machine tools, whilst similar benefits accrued from his development of a system of notation for the movements of machine elements. His opposition to street organ-grinders was a notable eccentricity; he estimated that a quarter of his mental effort was wasted by the effect of noise on his concentration.
    [br]
    Principal Honours and Distinctions
    FRS 1816. Astronomical Society Gold Medal 1823.
    Bibliography
    Babbage wrote eighty works, including: 1864, Passages from the Life of a Philosopher.
    July 1822, Letter to Sir Humphry Davy, PRS, on the Application of Machinery to the purpose of calculating and printing Mathematical Tables.
    Further Reading
    1961, Charles Babbage and His Calculating Engines: Selected Writings by Charles Babbage and Others, eds Philip and Emily Morrison, New York: Dover Publications.
    IMcN

    Biographical history of technology > Babbage, Charles

  • 14 Barlow, Edward

    SUBJECT AREA: Horology
    [br]
    baptized 15 December 1636 near Warrington, Cheshire, England d. 1716
    [br]
    English priest and mechanician who invented rack striking, repeating mechanisms for clocks and watches and, with others, patented a horizontal escapement for watches.
    [br]
    Barlow was the son of Edward Booth, but he adopted the surname of his godfather, the Benedictine monk Ambrose Barlow, as a condition of his will. In 1659 he entered the English College at Lisbon, and after being ordained a priest he was sent to the English mission. There he resided at Parkhall in Lancashire, the seat of Mr Houghton, with whom he later collaborated on the horizontal escapement.
    At a time when it was difficult to produce a light to examine the dial of a clock or watch at night, a mechanism that would indicate the hours and subdivisions of the hour audibly and at will was highly desirable. The count wheel, which had been used from the earliest times to control the striking of a clock, was unsuitable for this purpose as it struck the hours in sequence. If the mechanism was set off manually to determine the time, the strike would no longer correspond with the indications on the dial. In 1675 Barlow invented rack striking, where the hour struck was determined solely by the position of the hour hand. With this mechanism it was therefore possible to repeat the hour at will, without upsetting the sequence of striking. In 1687 Barlow tried to patent a method of repeating for watches, but it was rejected by James II in favour of a system produced by the watchmaker Daniel Quare and which was simpler to operate. He was successful in obtaining a patent for a horizontal escapement for watches in 1695, in collaboration with William Hough ton and Thomas Tompion. Although this escapement was little used, it can be regarded as the forerunner of the cylinder escapement that George Graham introduced c. 1725.
    [br]
    Bibliography
    1695 (with William Houghton and Thomas Tompion), British patent no. 344 (a horizontal escapement).
    Further Reading
    Dictionary of National Biography, 1885, Vol. 1, Oxford, S.V.Barlow.
    Britten's Old Clocks \& Watches and Their Makers, 1982, rev. Cecil Clutton, 9th edn, London, pp. 148, 310, 313 (provides a technical description of rack striking, repeating work and the horizontal escapement).
    DV

    Biographical history of technology > Barlow, Edward

  • 15 Braun, Karl Ferdinand

    [br]
    b. 6 June 1850 Fulda, Hesse, Germany
    d. 20 April 1918 New York City, New York, USA
    [br]
    German physicist who shared with Marconi the 1909 Nobel Prize for Physics for developments in wireless telegraphy; inventor of the cathode ray oscilloscope.
    [br]
    After obtaining degrees from the universities of Marburg and Berlin (PhD) and spending a short time as Headmaster of the Thomas School in Berlin, Braun successively held professorships in theoretical physics at the universities of Marburg (1876), Strasbourg (1880) and Karlsruhe (1883) before becoming Professor of Experimental Physics at Tübingen in 1885 and Director and Professor of Physics at Strasbourg in 1895.
    During this time he devised experimental apparatus to determine the dielectric constant of rock salt and developed the Braun high-tension electrometer. He also discovered that certain mineral sulphide crystals would only conduct electricity in one direction, a rectification effect that made it possible to detect and demodulate radio signals in a more reliable manner than was possible with the coherer. Primarily, however, he was concerned with improving Marconi's radio transmitter to increase its broadcasting range. By using a transmitter circuit comprising a capacitor and a spark-gap, coupled to an aerial without a spark-gap, he was able to obtain much greater oscillatory currents in the latter, and by tuning the transmitter so that the oscillations occupied only a narrow frequency band he reduced the interference with other transmitters. Other achievements include the development of a directional aerial and the first practical wavemeter, and the measurement in Strasbourg of the strength of radio waves received from the Eiffel Tower transmitter in Paris. For all this work he subsequently shared with Marconi the 1909 Nobel Prize for Physics.
    Around 1895 he carried out experiments using a torsion balance in order to measure the universal gravitational constant, g, but the work for which he is probably best known is the addition of deflecting plates and a fluorescent screen to the Crooke's tube in 1897 in order to study the characteristics of high-frequency currents. The oscilloscope, as it was called, was not only the basis of a now widely used and highly versatile test instrument but was the forerunner of the cathode ray tube, or CRT, used for the display of radar and television images.
    At the beginning of the First World War, while in New York to testify in a patent suit, he was trapped by the entry of the USA into the war and remained in Brooklyn with his son until his death.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with Marconi) 1909.
    Bibliography
    1874, "Assymetrical conduction of certain metal sulphides", Pogg. Annal. 153:556 (provides an account of the discovery of the crystal rectifier).
    1897, "On a method for the demonstration and study of currents varying with time", Wiedemann's Annalen 60:552 (his description of the cathode ray oscilloscope as a measuring tool).
    Further Reading
    K.Schlesinger \& E.G.Ramberg, 1962, "Beamdeflection and photo-devices", Proceedings of the Institute of Radio Engineers 50, 991.
    KF

    Biographical history of technology > Braun, Karl Ferdinand

  • 16 Hackworth, Timothy

    [br]
    b. 22 December 1786 Wylam, Northumberland, England
    d. 7 July 1850 Shildon, Co. Durham, England
    [br]
    English engineer, pioneer in construction and operation of steam locomotives.
    [br]
    Hackworth trained under his father, who was Foreman Blacksmith at Wylam colliery, and succeeded him upon his death in 1807. Between 1812 and 1816 he helped to build and maintain the Wylam locomotives under William Hedley. He then moved to Walbottle colliery, but during 1824 he took temporary charge of Robert Stephenson \& Co.'s works while George Stephenson was surveying the Liverpool \& Manchester Railway and Robert Stephenson was away in South America. In May 1825 Hackworth was appointed to the Stockton \& Darlington Railway (S \& DR) "to have superintendence of the permanent (i.e. stationary) and locomotive engines". He established the workshops at Shildon, and when the railway opened in September he became in effect the first locomotive superintendent of a railway company. From experience of operating Robert Stephenson \& Co.'s locomotives he was able to make many detail improvements, notably spring safety valves. In 1827 he designed and built the locomotive Royal George, with six wheels coupled and inverted vertical cylinders driving the rear pair. From the pistons, drive was direct by way of piston rods and connecting rods to crankpins on the wheels, the first instance of the use of this layout on a locomotive. Royal George was the most powerful and satisfactory locomotive on the S \& DR to date and was the forerunner of Hackworth's type of heavy-goods locomotive, which was built until the mid-1840s.
    For the Rainhill Trials in 1829 Hackworth built and entered the locomotive Sans Pareil, which was subsequently used on the Bol ton \& Leigh Railway and is now in the Science Museum, London. A working replica was built for the 150th anniversary of the Liverpool \& Manchester Railway in 1980. In 1833 a further agreement with the S \& DR enabled Hackworth, while remaining in charge of their locomotives, to set up a locomotive and engineering works on his own account. Its products eventually included locomotives for the London, Brighton \& South Coast and York, Newcastle \& Berwick Railways, as well as some of the earliest locomotives exported to Russia and Canada. Hackworth's son, John Wesley Hackworth, was also an engineer and invented the radial valve gear for steam engines that bears his name.
    [br]
    Further Reading
    R.Young, 1975, Timothy Hackworth and the Locomotive, Shildon: Shildon "Stockton \& Darlington Railway" Silver Jubilee Committee; orig. pub. 1923, London (tends to emphasize Hackworth's achievements at the expense of other contemporary engineers).
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longmans (describes much of Hackworth's work and is more objective).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, London: The Locomotive Publishing Co.
    PJGR

    Biographical history of technology > Hackworth, Timothy

  • 17 Ilgner, Karl

    SUBJECT AREA: Electricity
    [br]
    b. 27 July 1862 Neisse, Upper Silesia (now Nysa, Poland)
    d. 18 January 1921 Berthelsdorf, Silesia
    [br]
    German electrical engineer, inventor of a transformer for electromotors.
    [br]
    Ilgner graduated from the Gewerbeakademie (the forerunner of the Technical University) in Berlin. As the representative of an electric manufacturing company in Breslau (now Wroclaw, Poland) from 1897, he was confronted with the fact that there were no appropriate drives for hoisting-engines or rolling-plants in steelworks. Two problems prevented the use of high-capacity electric motors in the mining as well as in the iron and steel industry: the reactions of the motors on the circuit at the peak point of stress concentration; and the complicated handling of the control system which raised the risks regarding safety. Having previously been head of the department of electrical power transmission in Hannover, he was concerned with the development of low-speed direct-current motors powered by gas engines.
    It was Harry Ward Leonard's switchgear for direct-current motors (USA, 1891) that permitted sudden and exact changes in the speed and direction of rotation without causing power loss, as demonstrated in the driving of a rolling sidewalk at the Paris World Fair of 1900. Ilgner connected this switchgear to a large and heavy flywheel which accumulated the kinetic energy from the circuit in order to compensate shock loads. With this combination, electric motors did not need special circuits, which were still weak, because they were working continuously and were regulated individually, so that they could be used for driving hoisting-engines in mines, rolling-plants in steelworks or machinery for producing tools and paper. Ilgner thus made a notable advance in the general progress of electrification.
    His transformer for hoisting-engines was patented in 1901 and was commercially used inter alia by Siemens \& Halske of Berlin. Their first electrical hoisting-engine for the Zollern II/IV mine in Dortmund gained international reputation at the Düsseldorf exhibition of 1902, and is still preserved in situ in the original machine hall of the mine, which is now a national monument in Germany. Ilgner thereafter worked with several companies to pursue his conception, became a consulting engineer in Vienna and Breslau and had a government post after the First World War in Brussels and Berlin until he retired for health reasons in 1919.
    [br]
    Bibliography
    1901, DRP no. 138, 387 1903, "Der elektrische Antrieb von Reversier-Walzenstraßen", Stahl und Eisen 23:769– 71.
    Further Reading
    W.Kroker, "Karl Ilgner", Neue Deutsche Biographie, Vol. X, pp. 134–5. W.Philippi, 1924, Elektrizität im Bergbau, Leipzig (a general account).
    K.Warmbold, 1925, "Der Ilgner-Umformer in Förderanlagen", Kohle und Erz 22:1031–36 (a detailed description).
    WK

    Biographical history of technology > Ilgner, Karl

  • 18 Murdock (Murdoch), William

    [br]
    b. 21 August 1754 Cumnock, Ayrshire, Scotland
    d. 15 November 1839 Handsworth, Birmingham, England
    [br]
    Scottish engineer and inventor, pioneer in coal-gas production.
    [br]
    He was the third child and the eldest of three boys born to John Murdoch and Anna Bruce. His father, a millwright and joiner, spelled his name Murdock on moving to England. He was educated for some years at Old Cumnock Parish School and in 1777, with his father, he built a "wooden horse", supposed to have been a form of cycle. In 1777 he set out for the Soho manufactory of Boulton \& Watt, where he quickly found employment, Boulton supposedly being impressed by the lad's hat. This was oval and made of wood, and young William had turned it himself on a lathe of his own manufacture. Murdock quickly became Boulton \& Watt's representative in Cornwall, where there was a flourishing demand for steam-engines. He lived at Redruth during this period.
    It is said that a number of the inventions generally ascribed to James Watt are in fact as much due to Murdock as to Watt. Examples are the piston and slide valve and the sun-and-planet gearing. A number of other inventions are attributed to Murdock alone: typical of these is the oscillating cylinder engine which obviated the need for an overhead beam.
    In about 1784 he planned a steam-driven road carriage of which he made a working model. He also planned a high-pressure non-condensing engine. The model carriage was demonstrated before Murdock's friends and travelled at a speed of 6–8 mph (10–13 km/h). Boulton and Watt were both antagonistic to their employees' developing independent inventions, and when in 1786 Murdock set out with his model for the Patent Office, having received no reply to a letter he had sent to Watt, Boulton intercepted him on the open road near Exeter and dissuaded him from going any further.
    In 1785 he married Mary Painter, daughter of a mine captain. She bore him four children, two of whom died in infancy, those surviving eventually joining their father at the Soho Works. Murdock was a great believer in pneumatic power: he had a pneumatic bell-push at Sycamore House, his home near Soho. The pattern-makers lathe at the Soho Works worked for thirty-five years from an air motor. He also conceived the idea of a vacuum piston engine to exhaust a pipe, later developed by the London Pneumatic Despatch Company's railway and the forerunner of the atmospheric railway.
    Another field in which Murdock was a pioneer was the gas industry. In 1791, in Redruth, he was experimenting with different feedstocks in his home-cum-office in Cross Street: of wood, peat and coal, he preferred the last. He designed and built in the backyard of his house a prototype generator, washer, storage and distribution plant, and publicized the efficiency of coal gas as an illuminant by using it to light his own home. In 1794 or 1795 he informed Boulton and Watt of his experimental work and of its success, suggesting that a patent should be applied for. James Watt Junior was now in the firm and was against patenting the idea since they had had so much trouble with previous patents and had been involved in so much litigation. He refused Murdock's request and for a short time Murdock left the firm to go home to his father's mill. Boulton \& Watt soon recognized the loss of a valuable servant and, in a short time, he was again employed at Soho, now as Engineer and Superintendent at the increased salary of £300 per year plus a 1 per cent commission. From this income, he left £14,000 when he died in 1839.
    In 1798 the workshops of Boulton and Watt were permanently lit by gas, starting with the foundry building. The 180 ft (55 m) façade of the Soho works was illuminated by gas for the Peace of Paris in June 1814. By 1804, Murdock had brought his apparatus to a point where Boulton \& Watt were able to canvas for orders. Murdock continued with the company after the death of James Watt in 1819, but retired in 1830 and continued to live at Sycamore House, Handsworth, near Birmingham.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Gold Medal 1808.
    Further Reading
    S.Smiles, 1861, Lives of the Engineers, Vol. IV: Boulton and Watt, London: John Murray.
    H.W.Dickinson and R.Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    J.A.McCash, 1966, "William Murdoch. Faithful servant" in E.G.Semler (ed.), The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Murdock (Murdoch), William

  • 19 Townsend, Matthew

    SUBJECT AREA: Textiles
    [br]
    b. Leicester (?), England
    d. after 1867 USA
    [br]
    English inventor of the latch needle for making seamless hose, and developer of ribbed knitting on circular machines.
    [br]
    Townsend, who described himself in his first patent as a framework knitter and afterwards as a hosier of Leicester, took out a patent in 1847 for the application of a "machine like that of a point net frame to an ordinary stocking-frame". He described needles and hooks of a peculiar shape which were able to take the work off the knitting machine, reverse the loops and return them again so that ribbed knitting could be made on circular machines. These became popular for knitting stockings which, although not fully fashioned, had sufficient strength to fit the leg. In 1854 he took out a patent for making round hose with heels and toes fashioned on other machines. In yet another patent, in 1856, he described a method of raising looped pile on knitted fabrics for making "terry" towelling fabrics. He could use different coloured yarns in the fabric that were controlled by a Jacquard mechanism. It was in the same year, 1856, in a further patent that he described his tumbler or latch needles as well as the making of figured patterns in knitting on both sides of the fabric with a Jacquard mechanism. The latch needles were self-acting, being made to move up and down or backwards and forwards by the action of cams set in the cylindrical body of the machine. Normally the needle worked in a vertical or inclined position with the previous loop on the shank below the latch. Weft yarn was placed in the hook of the needle. The needle was drawn down between fixed plates which formed a new loop with the weft. At the same time, the original loop already on the shank of the needle moved along the shank and closed the latch so that it could pass over the newly formed loop in the needle hook and fall over the end of the needle incorporating the new loop on its way to make the next row of stitches. The latch needle obviated the need for loop wheels and pressers and thus simplified the knitting mechanism. Townsend's invention was the forerunner of an entirely new generation of knitting machines, but it was many years before its full potential was realized, the bearded needle of William Lee being preferred because the hinge of the latch could not be made as fine as the bearded needle.
    Townsend was in the first rank of skilful manufacturers of fancy Leicester hosiery and had a good practical knowledge of the machinery used in his trade. Having patented his needles, he seems not to have succeeded in getting them into very profitable or extensive use, possibly because he fixed the royalty too high. His invention proved to be most useful and profitable in the hands of others, for it gave great impetus to the trade in seamless hose. For various reasons he discontinued his business in Leicester. He emigrated to the USA, where, after some initial setbacks, he began to reap the rewards of his skill.
    [br]
    Bibliography
    1847, British patent no. 11,899 (knitting machine). 1854, British patent no. 1,523 (seamless hose).
    1856, British patent no. 1,157 ("terry" towelling fabrics).
    1856, British patent no. 1,858 (latch needles and double-sided patterns on fabrics).
    Further Reading
    F.A.Wells, 1935, The British Hosiery and Knitwear Industry, London (mentions Townsend briefly).
    W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867) (a better account of Townsend).
    RLH

    Biographical history of technology > Townsend, Matthew

  • 20 Yeoman, Thomas

    SUBJECT AREA: Civil engineering
    [br]
    b. c. 1700 probably near Northampton, England
    d. 24 January 1781 London, England
    [br]
    English surveyor and civil engineer.
    [br]
    Very little is known of his early life, but he was clearly a skilful and gifted engineer who had received comprehensive practical training, for in 1743 he erected the machinery in the world's first water-powered cotton mill at Northampton on the river Nene. In 1748 he invented a weighing machine for use by turnpike trusts for weighing wagons. Until 1757 he remained in Northampton, mainly surveying enclosures and turnpike roads and making agricultural machinery. He also gained a national reputation for building and installing very successful ventilating equipment (invented by Dr Stephen Hales) in hospitals, prisons and ships, including some ventilators of Yeoman's own design in the Houses of Parliament.
    Meanwhile he developed an interest in river improvements, and in 1744 he made his first survey of the River Nene between Thrapston and Northampton; he repeated the survey in 1753 and subsequently gave evidence in parliamentary proceedings in 1756. The following year he was in Gloucestershire surveying the line of the Stroudwater Canal, an operation that he repeated in 1776. Also in 1757, he was appointed Surveyor to the River Ivel Navigation in Bedfordshire. In 1761 he was back on the Nene. During 1762–5 he carried out surveys for the Chelmer \& Blackwater Navigation, although the work was not undertaken for another thirty years. In 1765 he reported on land-drainage improvements for the Kentish Sour. It was at this time that he became associated with John Smeaton in a major survey in 1766 of the river Lea for the Lee Navigation Trustees, having already made some surveys with Joseph Nickalls near Waltham Abbey in 1762. Yeoman modified some of Smeaton's proposals and on 1 July 1767 was officially appointed Surveyor to the Lee Navigation Trustees, a post he retained until 1771. He also advised on the work to create the Stort Navigation, and at the official opening on 24 October 1769 he made a formal speech announcing: "Now is Bishops Stortford open to all the ports of the world." Among his other works were: advice on Ferriby Sluice on the River Ancholme (1766); reports on the Forth \& Clyde Canal, the North Level and Wisbech outfall on the Nene, the Coventry Canal, and estimates for the Leeds and Selby Canal (1768–71); estimates for the extension of the Medway Navigation from Tonbridge to Edenbridge (1771); and between 1767 and 1777 he was consulted, with other engineers, by the City of London on problems regarding the Thames.
    He joined the Northampton Philosophical Society shortly after its formation in 1743 and was President several times before he moved to London. In 1760 he became a member of the Society for the Encouragement of Arts, Manufactures and Commerce, and in 1763 he was chosen as joint Chairman of the Committee on Mechanics—a position he held until 1778. He was elected a Fellow of the Royal Society on 12 January 1764. On the formation of the Smeatonian Society of Civil Engineers, the forerunner of the present Institution of Civil Engineers, he was elected first President in 1771, remaining as such until his illness in 1780.
    [br]
    Principal Honours and Distinctions
    FRS 1764. President, Smeatonian Society of Civil Engineers 1771–80; Treasurer 1771–7.
    JHB

    Biographical history of technology > Yeoman, Thomas

См. также в других словарях:

  • The Forerunner — (1981 1994) was a publication that emphasized reformation of society and biblical worldview. The monthly newspaper was published by Maranatha Campus Ministries from 1981 to 1989. Contributing editors and correspondents from Russia, Ukraine, China …   Wikipedia

  • forerunner — forerunner, precursor, harbinger, herald are comparable when they denote someone or something that comes before another person or thing and in some way indicates his or its future appearance. Forerunner may denote a messenger that goes before a… …   New Dictionary of Synonyms

  • Forerunner (magazine) — The Forerunner was a monthly magazine kept by Charlotte Perkins Gilman (mostly known as the writer of The Yellow Wallpaper ), from 1909 through 1916. During that time, she wrote every single line of it all editorials, critical articles, book… …   Wikipedia

  • Forerunner — Fore*run ner, n. 1. A messenger sent before to give notice of the approach of others; a harbinger; a sign foreshowing something; a prognostic; as, the forerunner of a fever. [1913 Webster] Whither the forerunner in for us entered, even Jesus. Heb …   The Collaborative International Dictionary of English

  • forerunner — (n.) c.1300, from FORE (Cf. fore) + RUNNER (Cf. runner). Middle English rendition of L. praecursor, in reference to John the Baptist as the forerunner of Christ. The Old English word was foreboda …   Etymology dictionary

  • The Addams Family — are a group of fictional characters created by American cartoonist Charles Addams. Earlier Addams had worked in collaboration with his friend Ray Bradbury. In a 2001 interview Bradbury states that after failing to find a publisher, they went… …   Wikipedia

  • The Salvation Army — Classification Protestant Orientation Holiness Leader Linda Bond Geographical areas Worldwide Headquarters …   Wikipedia

  • The Beggar's Opera — is a ballad opera in three acts written in 1728 by John Gay. It is one of the watershed plays in Augustan drama and is the only example of the once thriving genre of satirical ballad opera to remain popular today. Ballad operas were satiric… …   Wikipedia

  • The Story of Civilization —   Author(s) Will Durant Ariel Durant …   Wikipedia

  • The Treble — is a term in association football that refers to a club winning their country s top tier league, primary domestic cup and continental level cup competition in the same season. In general, these may be referred to as the European Treble (often… …   Wikipedia

  • The Byzantine Empire —     The Byzantine Empire     † Catholic Encyclopedia ► The Byzantine Empire     The ancient Roman Empire having been divided into two parts, an Eastern and a Western, the Eastern remained subject to successors of Constantine, whose capital was at …   Catholic encyclopedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»